
Creating Player, Level, and Camera Metrics that
Accommodate Puzzle Gameplay
Joel Bergen

Introduction

Our game loop began with an even blend of puzzles and platforming in its levels. During development,

we found that most of our mechanics supported puzzle gameplay, but didn't fit directly with

platforming.

This left us with two choices: we could rescope to introduce new mechanics that supported our

platforming gameplay, or we could de-emphasize platforming and focus on supporting puzzle gameplay.

Given the short amount of development time our team had left, we decided to pivot to level design

primarily focused on puzzles.

Design Problem

This change introduced a new problem to our game. Our game metrics were designed around

platforming, which meant that the player had a very agile jump. This created issues with puzzle-focused

issues, as for an area to be inaccessible, it had to extend almost entirely off-screen. This made it tough

to include information that was visible to the player but out of reach.

The above diagrams show the player’s old jump capabilities (green) alongside the distance required to

make a jump visibly impossible (blue). Note how in both examples the blue distance occupies most of the

screen.

Any change to metrics would require all existing levels to be redesigned, making it important to solve

this problem as soon as possible. Because of this, I made it my goal to solve the following design

problem:

What player, level, and camera metrics best accommodate our shift toward puzzle gameplay?

Method

Approaching the Problem

Before I began solving the problem, I first identified what variables were causing the original problem. I

found that a mixture of player, level, and camera metrics was the primary cause.

Player Metrics

How fast does the player move?
How far/high can they jump?

Level Metrics

What’s the size of each level?
How long/short should jumps

be?
Are any jump distances/heights

not allowed?

Camera Metrics

How far away is the camera
from the player?

After adjusting one of these factors, I made sure to re-evaluate the state of the other two. This is

because all three variables are intertwined, and a positive change to one could harm another.

Brainstorming Solutions

Once I identified the three factors I would edit, I created a test level and adjusted the player and camera

metrics. After some tweaking, I was satisfied with the following changes:

• Reduced the player’s jump height from 2.8m to 1.2m.

• Zoomed the camera out by 10%.

I then used these new player and camera metrics to establish level metrics. This was important to do as

our game has 3 separate level designers working on it. If we left level metrics to whatever “felt right”,

some levels may have jumps that are 1.9m long, and some may have jumps that are 2.1m long. This

would leave our final game with an inconsistent and messy feeling set of levels.

To do this, I tested the capabilities and limitations of the player controller and camera and made

min/max values for important level features. This includes:

• Min/Max jump distances

• Min/Max jump heights

• Min/Max room widths

I also established dead zones to improve player comprehension of levels. For example, the player has a

4m jumping distance, and therefore 3m-6m is established as a jump dead zone. This means no jump in

the game will be within that range so that the player will never be confused by a jump that “looks”

possible but isn’t.

Implementing the Solution

Establishing metrics is helpful, but it’s just as important to make them easily accessible to the team. To

solve this, I documented our metrics through our GDD, a Metrics Gym, and a Modular Greybox Kit.

In our GDD, I wrote down what movement capabilities the player has, as well as what jump

distances/heights are allowed/disallowed.

I also created a Metrics Gym inside of the Unreal project itself, which displayed all level metrics within a

playable map. This way level designers could quickly reference level metrics while working without

having to open the GDD.

Lastly, I created a modular Greybox kit that abided by the newly established level metrics. This way level

designers can use ready-made pieces to build their level rather than having to measure out geometry

each time. This will rapidly increase the speed of our level creation while also increasing the consistency

of our created levels.

To do this I first created a list of needed level pieces along with their size. This list was then approved by

the project’s other two level designers, ensuring the kit would give all of us the tools we needed.

I then created the level pieces in Maya and scaled their UVs so that a consistent 1mx1m development

texture could be applied in-engine.

Finally, I imported the pieces into Unreal and set their pivots so that they could easily be snapped

together on a grid.

Testing the Solution

To ensure the new metrics could work on a real level, I used the modular kit to recreate the three rooms

used in our MVP build. After doing so the levels kept all of their original functionality, while also better

matching the puzzle gameplay of our game.

This implementation proved that the new metrics were functional and ready for future levels.

Conclusion

This design problem proved to me just how important consistent metrics are for a full game. On a solo

project, you might be able to get by without them, but when multiple people are designing levels it's

nearly impossible to build consistent levels off of "feel" alone.

I found the creation of a Metrics Gym to be an especially helpful addition, as metrics are only as useful

as they are easy to follow. Creating an in-engine example of proper metrics makes it much easier for

level designers to abide by them.

Future Steps

The level art kit we used for our MVP build does not currently match our new level metrics. Because of

this, we will have to alter existing assets and create new ones to accommodate the changes.

I have already created a list of level art pieces we will need for the game alongside their metrics, and

have begun creating some of the pieces. In future weeks I will create more pieces on this list while also

creating new levels with the new metrics.

